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ABSTRACT: In the present study, five detour/distance matrix
based molecular descriptors (MDs) termed as relative eccentric
distance sum/product indices (denoted by Rξ1

SV, Rξ2
SV, Rξ3

SV, RPξ1
SV,

and RPξ2
SV), as well as their topochemical versions denoted by

(Rξ1
cSV, Rξ2

cSV, Rξ3
cSV, RPξ1

cSV, and RPξ2
cSV) have been conceptualized

for exclusive use for molecules containing cyclic moieties. The
said MDs exhibited exceptionally high discriminating power and
high sensitivity toward branching/relative position of substituents
in cyclic structures amalgamated with negligible degeneracy. Subsequently, the proposed MDs along with other MDs were
successfully utilized for the development of models for the prediction of human glutaminyl cyclase (hQC) inhibitory activity using
decision tree (DT), random forest (RF) and moving average analysis (MAA). A data set comprising of 45 analogues of substituted
3-(1H-imidazol-1-yl) propyl thiourea derivatives was used. DT identified proposed relative eccentric distance sum topochemical
index-1 as the most important MD. High accuracy of prediction up to 96%, 93%, and 95% was observed in case of models derived
from decision tree, random forest, and MAA, respectively. The statistical significance of proposed models was assessed through
specificity, sensitivity, overall accuracy, Mathew’s correlation coefficient (MCC), and intercorrelation analysis.

KEYWORDS: hQC inhibitors, 3-imidazolyl propyl thiourea,
relative eccentric distance product indices and relative eccentric distance sum indices, combinatorial library, virtual screening

■ INTRODUCTION

Finding new drugs is a highly complex, expensive, and time-
consuming task, as there is no single systematic way to
automatically discover a drug even when the disease, targets,
and molecular mechanisms of drug activity are well understood.1

Many investigators and drug companies therefore resort to
computer-aided drug design (CADD) technologies because
of their high efficiency and versatility in the design of new
drugs, thereby saving time and money.2 One of the major goals
of computer-aided drug design and discovery strategies is
the identification of new lead chemical compounds.3 These
approaches include (quantitative) structure−activity relationship
[(Q)SAR)] modeling techniques. A (Q)SAR is essentially a
mathematical equation/model that is determined from a set of
molecules with known activities using computational ap-
proaches. The exact form of the relationship between structure
and activity can be determined using a variety of statistical
methods and molecular descriptors and the resulting model is
then used to predict the activity of new molecules.4

One major emphasis in the (Q)SAR methodology is the
development of easily calculable parameters, which are available
for any arbitrary structure. A large number of constitutional,

topological, geometric, electrostatic, and quantum chemical
molecular descriptors have been introduced in theoretical
chemistry with the objective of expressing chemical structures
in a numerical form. Such structural descriptors can be used to
model physical, chemical, or biological properties.5 It has been
well recognized for some time that a success or a failure of a
structure−property−activity study often critically depends on
the selection of MDs. Hence, it is not surprising to see continual
development of novel MDs.6

Molecular topological factors that taken into account the
arrangements of atoms across the parent molecular skeleton,
concepts of steric relations and molecular bulk, branchedness,
and relationships among various nonbonded parts of the
molecule would be useful to better understand relationships
between molecular structure and their empirical properties.2,7

Consequently MDs based on molecular topology have emerged
as molecular descriptors of choice in structure−activity/property
relationship studies and rational drug design. They are in
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particular inescapable in the development of successful (Q)SAR
models as well as in screening combinatorial libraries.8 The
utilization of topological indices (TIs) in combinatorial
chemistry9 has been extensively reviewed by Bereg.10 TIs are
relatively simpler and facilitate rapid calculation. Moreover, TIs
encode useful information about various aspects of molecular
architecture (size, shape, branching, and cyclicity). A number of
TIs have been proposed so far. The calculation of these TIs is
well documented in the literature.11

The purpose of defining a TI is to represent each chemical
structure with a numerical value, keeping it as discriminatory as
possible. TIs are sometimes criticized because the physicochem-
ical meaning of a topological index is not explicit as compared
with other parameters. A thorough and conclusive interpretation
of TIs is indeed not simple, requiring the total dissection of the
calculation formula, as well as some knowledge of underlying
theory and property modeling.12 TIs also exhibit consider-
able mutual correlation, which can be a major problem when
performing structure−activity studies because the employed
statistical methods may fail or give little meaningful correlation
of biological, chemical, or physical properties of molecules.13

The interest in developing new TIs for organic molecules has
revived in recent years, as TIs have found new applications in
similarity and diversity assessment, database mining, and virtual
screening of combinatorial libraries.14−16 TIs can be classified on
the basis of the type of matrix used, such as adjacency, distance,
adjacency-cum-distance, centricity, and information content.

Most of the well-known TIs are derived from distance matrices
to characterize molecular graphs. In contrast, there exist
only a handful of TIs based upon detour matrices, and so there
exists a vast potential in utilizing detour matrices for developing
novel TIs.17

Alzheimer’s disease is the most common cause of dementia,
representing around 50−80% of all cases.18 The modified
amyloid hypothesis suggested that causative event of AD
pathology is the deposition of amyloid fibril β (Aβ) leading to
formation of the neurofibrillary tangles, loss of neurons, vascular
damage, and consequently dementia. The major fraction of
Aβ is N-terminally truncated possessing a glutamine that
can subsequently be cyclized into pyroglutamate (pE).19 The
cyclization renders the peptide lysosomal proteases and
aminopeptidases resistant,20 more prone to aggregation,
increases its hydrophobicity,21 and neurotoxicity.22 The enzyme
that catalyzes this conversion of glutamine to pE is glutaminyl
cyclase (QC).23 An important event in the pathogenesis of AD
patients’ brains is the increased expression of QC in the earliest
stages of pathology.24 The application of inhibitors of QC as a
new strategy for the treatment of AD has proven to be successful
in different transgenic animal models.25 Unfortunately, many
recent clinical trials assessing the efficacy of novel therapeutic
agents for the treatment of AD have failed, highlighting the
continued importance of novel scaffolds in AD research.
Therefore, QC inhibitors may achieve the goal of preventing
AD development or progression.26

Figure 1. Calculation of the values of the relative eccentric distance product indices (RPξ1
cSV and RPξ2

cSV) and relative eccentric distance sum indices
(Rξ1

cSV, Rξ2
cSV, and Rξ3

cSV) for three isomers of ethyl isopropyl cyclohexane.
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In the present investigation, five highly discriminating detour/
distance matrix based MDs termed as relative eccentric distance
sum indices (denoted by Rξ1

SV, Rξ2
SV, Rξ3

SV) and relative eccentric
distance product indices (denoted by RPξ1

SV, RPξ2
SV), as well as their

topochemical versions (denoted by (RPξ1
cSV, RPξ2

cSV, Rξ1
cSV, Rξ2

cSV,
and Rξ3

cSV) have been conceptualized. The proposed MDs along
with diverse 2D and 3D MDs were successfully utilized through
random forest, decision tree, and moving average analysis to
build suitable models for the prediction of hQC inhibitory
activity of substituted 3-(1H-imidazol-1-yl) propyl thiourea
derivatives.27

■ RESULTS AND DISCUSSION

In the present study, five novel detour cum distance matrix based
indices as well as their topochemical counterparts have been
conceptualized. The topostructural versions of these MDs have

been calculated from a detour matrix (Δ) and distancematrix (D),
whereas the topochemical versions have been calculated using
chemical detour matrix (Δc) and chemical distance matrix (Dc).

Evaluation of Eccentric Distance Sum/Product Indices.
The eccentric distance sum is the summation of product of
eccentricity and distance sum of each vertex in the hydrogen
suppressed molecular graph.28 The ratio of both product of
maximum path distance and path eccentricity on one hand and
the distance sum and eccentricity on the other hand augmented
the sensitivity of proposed MDs.

Evaluation for the Sensitivity toward Relative Position
of Substituents. As observed from Figure 1, simple change in
the position of ethyl group from ortho to either meta or para
leads to steep change in index values of proposed MDs. In case
of the relative eccentric distance product index 1 (RPξ1

SV), the
value changes from 643.12 to 42.31 as ethyl substituent is simply

Table 1. Index Values of Relative Eccentric Distance Product Indices (RPξ1
SV and RPξ2

SV) and Relative Eccentric Distance Sum
Indices (Rξ1

SV, Rξ2
SV, Rξ3

SV) for All Possible Cyclic Structures Containing Four and Five Vertices
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shifted from ortho to para position. The index value also changes
from 643.12 to 162.88 as ethyl substituent is shifted from ortho
to meta position. In case of relative t eccentric distance product
index 2 (RPξ2

SV) the index value changes from 4136.02 to 17.9 as
ethyl substituent is shifted from ortho to para position. The index
value also changes from 4136.02 to 265.28 as ethyl substituent is
shifted from ortho to meta position. In case of relative eccentric
distance sum index 1 (Rξ1

SV) the index value changes from 37.295
to 24.43 as ethyl substituent is shifted from ortho to para
position. In case of relative eccentric distance sum index 2 (Rξ2

SV),
the index value changes from 13.70 to 6.78 as ethyl substituent is
shifted from ortho to para position. In case of the relative distance
sum index 3 (Rξ3

SV), the value changes by two times from 5.37 to
2.19 as ethyl substituent is shifted from ortho to para position.
The index value also changes from 5.37 to 3.24 as ethyl
substituent is shifted from ortho to meta position. This major
change in the index value without changing number of vertices
reveals exceptionally high sensitivity of proposed indices.
Evaluation of Eccentric Distance Sum/Product Indices

for the Discriminating Power. The ratio of the highest to
lowest value for all possible structures with the same number of
vertices is called as discriminating power. The discriminating
power is one of important characteristics of a TI as mentioned
previously. As observed from Tables 1 and 2, the ratio of the
highest to lowest value for all possible structures containing five
vertices for RPξ1

SV, RPξ2
SV, Rξ1

SV, Rξ2
SV, and Rξ3

SV is 229, 52429, 9, 74,

and 621, respectively, which is exceptionally high (Tables 1 and 2).
The exceptionally high discriminating power of proposed indices
renders them extremely sensitive toward minor changes in
molecular structures. This extreme sensitivity toward branching
as well relative position of substituents in cyclic structure and
high discriminating power of proposed indices are clearly evident
from respective values of all possible structures with five vertices.
Further, to encode chemical information of a particular
heteroatom involved in a molecular structure one can easily resort
to topochemical versions of proposed indices (details in
Supporting Information).
Out of a total of ten proposed indices Rξ1

SV, Rξ2
SV, Rξ1

cSV,
Rξ2

cSV, RPξ1
cSV, and RPξ2

cSV belong to third generation, RPξ1
SV, RPξ2

SV,
and Rξ3

SV belong to fourth generation, and Rξ3
cSV belongs to f if th

generation as per the criteria specified by Dureja and Madan.29

Evaluation of Eccentric Distance Sum/Product Indices
for the Degeneracy. The measure of the ability of an index to
differentiate between the relative positions of atom in a molecule
is termed as degeneracy. All the proposed MDs did not exhibit
any degeneracy for all possible cyclic structures with four and five
vertices (Table 2). The low degeneracy indicates the enhanced
capability of proposed MDs to differentiate and demonstrate
slight variations in the molecular structure, which clearly reveals
the remote chance of different structures having the same index
value.

Intercorrelation Analysis. Intercorrelation analysis of the
proposed MDs with other well-known and widely used MDs
revealed that these are not correlated with Wiener’s index,
molecular connectivity index, eccentric connectivity index and
Balaban’s index. However, these proposed MDs are weakly
correlated with Zagreb indices M1 and M2 (Table 3) as per the
criteria specified by Trinajstic et al.30

The proposed MDs possess certain distinct advantages over
existing ones. First, only few existing MDs are derived from
detour matrices. The proposed MDs involve the use of a detour
matrix and are based upon relative values of longest distance
and shortest distance between various atoms in a hydrogen
suppressed molecular structure. This approach provides valuable
information with regard to shape factor and is of utmost
importance in molecules containing cyclic moieties.
Second, though a very large number of MDs of diverse nature

have been reported in literature, only few MDs belong to fourth
and fifth generations. Three of the descriptors proposed here
belong to fourth generation whereas one belongs to fifth
generation. Third, topochemical versions of the proposed MDs
exhibit negligible degeneracy. Fourthly, very high index values of

Table 2. Comparison of the Discriminating Power and
Degeneracy of Relative Eccentric Distance Product Indices
(RPξ1

SV, RPξ2
SV) and Relative Eccentric Distance Sum Indices

(Rξ1
SV, Rξ2

SV, Rξ3
SV) Using All Possible Cyclic Structures

Containing Four and Five Verticesa

RPξ1
SV RPξ2

SV Rξ1
SV Rξ2

SV Rξ3
SV

for four vertices
minimum value 6.95 0.48 10.68 2.93 0.83
maximum value 81 65.61 36 32.4 29.16
ratio 1:12 1:136 1:3 1:11 1:35
degeneracy 0/4 0/4 0/4 0/4 0/4
for five vertices
minimum value 4.48 0.2 9.22 1.74 0.33
maximum value 1024 10485.76 80 128 205
ratio 1:229 1:52428 1:9 1:74 1:621
degeneracy 0/18 0/18 0/18 0/18 0/18

aDegeneracy: Number of compounds having same values/total
number of compounds with same number of vertices.

Table 3. Intercorrelation Matrixa

χ ξc M1 M2 W D RPξ1
SV RPξ2

SV Rξ1
SV Rξ2

SV Rξ3
SV

χ 1 0.91 0.49 0.52 0.78 0.37 0.35 0.24 0.37 0.28 0.24
ξc 1 0.49 0.57 0.71 0.2 0.34 0.23 0.34 0.26 0.23
M1 1 0.97 −0.02 −0.3 0.88 0.72 0.91 0.88 0.82
M2 1 0.002 −0.3 0.88 0.74 0.88 0.87 0.82
W 1 0.56 −0.17 −0.14 −0.22 −0.25 −0.23
D 1 −0.35 −0.34 −0.34 −0.4 −0.4
RPξ1

SV 1 0.91 0.94 0.98 0.97
RPξ2

SV 1 0.75 0.87 0.94
Rξ1

SV 1 0.95 0.88
Rξ2

SV 1 0.97
Rξ3

SV 1
aχ = molecular connectivity index; ξc = eccentric connectivity index; M1 = Zagreb index 1; M2 = Zagreb index 2;W = Wiener’s index; D = Balaban’s
index.
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complex chemical structures may result in numerous problems.
Previously many researchers resorted to either logarithmic or
square root approach so as to keep index values to be within
reasonable limits. But, such an approach also results in steep
reduction in discriminating power. To overcome this problem,
a recently reported approach [i.e., dividing the index values by a
constant factor (km)] has been used. This method has a distinct
edge as it reduces the index values of complex chemical structures
to be within reasonable limits without compromising with
the discriminating power.31 Use of relative values of longest
distance and shortest distance between various atoms also helps
in keeping index values of complex organic structures to be
within limits.
Finally, the proposed MDs are easily interpretable because

of their simplicity as compared to other MDs and hence can be
easily utilized for development of lead molecules through reverse
engineering as well as virtual screening.
Utilization of Eccentric Distance Sum/Product Indices.

In this study the novel as well as existing MDs have been utilized
to develop suitable models for the prediction of hQC inhibitory
activity of substituted 3-(1H-imidazol-1-yl) propyl thiourea
derivatives27 (Figure 2 and Table 6) using decision tree (DT),
random forest, and MAA.

Models Based upon Decision Tree (DT) and Random
Forests (RF). DT was built from a set of 46 MDs including
the proposed relative eccentric distance product topochemical
index 1 (A1) and relative eccentric distance sum topochemical
index 1 (A2) enlisted in Table 4. The MDs at root node is most
important and the importance of MDs decreases as the length of
tree increases.
The classification of substituted substituted 3-(1H-imidazol-1-yl)

propyl thiourea derivatives as inactive and active with respect
to hQC inhibitory activity using a single tree, based on relative
eccentric distance sum topochemical index 1 (A2), Ghose crippen
molar refractivity (A13) andmolecular connectivity topochemical
index, (A40) (Figure 3). The decision tree identified the relative
eccentric distance sum topochemical index 1 (A2) as the most
important index. The decision tree classified the analogues with
an accuracy of 95.5%. The specificity and sensitivity of the training
set were of the order of 96.4% and 94.1% (Table 5). In 10-fold
cross-validation, 84.4% of substituted 3-imidazolyl propyl
thiourea analogues were correctly classified with regard to the
said biological activity. The specificity and sensitivity of cross
validated set were found to be 85.7% and 82.3% respectively and
value of MCC for training and cross validated set was found to be
0.91 and 0.7, respectively (Table 5).
The random forests were grown with 46 MDs (Table 4). The

RF classified substituted 3-imidazolyl propyl thiourea derivatives

as inactive and active with an accuracy of 93.3% with respect to
hQC inhibitory activity. The out-of-bag (OOB) estimate of error
was found to be only 6.7%. The specificity and sensitivity was of
the order of 92.8% and 92%, respectively, and the value of MCC
was found to be 0.86 (Table 5).

Figure 2. Basic structures and arbitrary atom numbering scheme for the
substituted 3-(1H-imidazol-1-yl) propyl thiourea derivatives.27

Table 4. List ofMolecular Descriptors Employed for the Study

code descriptora

A1 relative eccentric distance product topochemical index 1, RPξ1
cSV

A2 relative eccentric distance sum topochemical index 1, Rξ1
cSV

A3 superpendentic index, ∫ C
P

A4 total information index of atomic composition, IAC
A5 first Zagreb index by valence vertex degrees, ZM1 V
A6 Schultz MTI by valence vertex degrees, SMTIV
A7 Gutman MTI by valence vertex degrees, GMTIV
A8 reciprocal distance Wiener type index, RDSUM
A9 maximal electrotopological negative variation, MAXDN
A10 sum of Kier Hall electrotopological states, Ss
A11 Wiener type index from polarizability weighted distance matrix, Whetp
A12 molecular electrotopological variation, DELS
A13 Ghose crippen molar refractivity, AMR
A14 leading eigenvalue from polarizability weighted distance matrix, Eig1p
A15 E-state topological parameter, TIE
A16 Randic type eigen vector based index from Vander waals weighed

distance matrix, VRv1
A17 Randic type eigen vector based index from electronegativity weighed

distance matrix, VRe1
A18 Randic type eigen vector based index from polarizibilty weighed

distance matrix, VRp1
A19 eccentric connectivity topochemical index, ξc

c

A20 A total size index/unweighted, Au

A21 1st component size directional WHIM index, L1e
A22 superaugmented eccentric connectivity distance sum topochemical

index 2, SEDξc2
c

A23 Wiener’s topochemical index, Wc
A24 augmented eccentric connectivity topochemical index 1, Acξ1

c

A25 V total size index/weighted by atomic masses, Vm

A26 V total size index/weighted by atomic electrotopological states, Vs

A27 average vertex distance degree, VDA
A28 A total size index/weighted by atomic masses, Am

A29 molecular weight, MW
A30 Broto−Moreau autocorrelation −lag8/weighted by atomic masses,

ATS8m
A31 Geary autocorrelation −lag8/weighted by atomic masses, GATS8p
A32 Eigen vector coefficient sum from electronegativity, VEe1
A33 leverage weighted total index/weighted by atomic masses, HATSm
A34 total information content on distance equality, IDET
A35 H autocorrelation of lag 1/weighted by atomic Vander Walls volume,

H1v
A36 weighted by atomic Vander Walls volume, HTv
A37 H total index/weighted by atomic masses, HTm
A38 H autocorrelation of lag 0/weighted by atomic masses,H0m
A39 Kier flexibility index, PHI
A40 Molecular connectivity topochemical index, χA

A41 3D Wiener index, W3D
A42 3D Balaban index, J3D
A43 Balaban type index from electronegativity weighted distance matrix, Jhete
A44 total information content index (neighborhood symmetry of 1 order),

TIC1
A45 valence connectivity index chi 0, χ0v
A46 Kier symmetry index, S0K

aThe majority of Dragon descriptors have been defined in textbooks
by Todeschini and Consonni,32 Karelson,33 and Devillers and
Balaban.34
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High values of MCC simply indicate robustness of the
proposed DT and RF based models for hQC inhibitory activity.
Decision tree selected A2, relative eccentric distance sum topo-
chemical index 1, as the most important descriptor demonstrat-
ing its significance in (Q)SAR/QSPR studies.
Models Based upon Moving Average Analysis. Using

a single descriptor at a time, five independent MAA based
models using relative eccentric distance product topochemical
index 1 (A1), relative eccentric distance sum topochemical index
1 (A2), Ghose crippen molar refractivity (A13), A total size
index/unweighted (A20), and first component size directional
WHIM index (A21) were developed for predicting the hQC
inhibitory activities. The proposed models have been illustrated
in Table 7. The overall accuracy of prediction hQC inhibitory
activity varied from 86.8% to >95%. Existence of a transitional
range in a model is ideal because it clearly indicates a gradual
change in the biological activity. The average IC50 (Table 7 and
Figure 4) for active range in all the models for hQC inhibitory
activity varied from 41.8 to 56.1 nM. Extremely low values of
average IC50 indicate high potency of the active ranges in the
proposed models.
The specificity and sensitivity for all the MAA based models

was found to be >85% and >75% respectively and the value of
MCCwas found to be >0.72 (details in Supporting Information).
High values of MCC indicate robustness of the proposed MAA based
models for hQC inhibitory activity. Moreover, intercorrelation
analysis (Supporting Information) revealed that none of the pairs
of indices A1, A2, A13, A20, and A21 are correlated with each
other.
These models can be used to reduce huge compound libraries

to a handful of compounds for ultimate synthesis and biological
screening in a cost-effective manner. Very few compounds

predicted to be active by all the models should constitute a group
of compounds for synthesis and biological screening.

■ CONCLUSION
The proposed relative eccentric distance sum indices and relative
eccentric distance product indices exhibited exceptionally high
discriminating power amalgamated with negligible degeneracy.
Proposed MDs were also found to be highly sensitive toward
both the presence and the relative positions of heteroatoms.
Moreover, these indices were found to be noncorrelating with
important topological descriptors. These qualities ensure their
utility in drug design, quantitative structure activity/property
relationships, combinatorial library design, isomer discrimination,
and similarity/dissimilarity studies.
Subsequently the proposed MDs along with other MDs were

successfully employed for development of numerous models
for development of models for the prediction of hQC inhibitory
activity of substituted 3-imidazolyl propyl thiourea derivatives
through DT, random forest andMAA. The proposedMDA2 was
identif ied as the most important descriptors by the decision tree.
The models exhibited high degree of predictability with regard
to hQC inhibitory activity using decision tree, random forest
and moving average analysis. The accuracy of prediction of single
descriptor based models using DT, RF, and MAA was found to
be 96%, 93%, and 95%, respectively. High values of MCC indicate
robustness of the proposed DT, RF, and MAA based models for
hQC inhibitory activity. High accuracy of prediction of proposed
models offers vast potential for providing lead structures for the
development of potent therapeutic agents as hQC inhibitors for
the treatment of Alzheimer’s disease.

■ METHODOLOGY
The values of Rξm

SV and RPξm
SV were calculated for all possible

cyclic structures with four and five vertices using an in-house
computer program (Figure 1 and Table1).

Calculation of Topological Indices. Relative Eccentric
Distance Sum Index. Relative eccentric distance sum index,
denoted by Rξm

SV, may be defined as the summation of ratio of
the product of maximum path sum and path eccentricity and
the product of distance sum and eccentricity of each vertex in a
hydrogen suppressed molecular graph having n vertices. It can be
expressed as per the following:

∑ σ η
ξ =

×
×=

⎛
⎝⎜

⎞
⎠⎟k S E

1

i

n
i i

i i

m

1

R
m

SV

m (1)

where σi is the maximum path sum and ηi is the path eccentricity
(both obtained through detour matrix), Si is distance sum, and
Ei is the eccentricity (both obtained through distance matrix) of

Figure 3. Decision tree for distinguishing active analogue (A) from
inactive analogue (B). (A2) Relative eccentric distance sum top-
ochemical index-1 (Rξ1

cSV). (A13) Ghose crippen molar refractivity
(AMR). (A40) Molecular connectivity topochemical index, (χA).

Table 5. Confusion Matrix for hQC Inhibitory Activity Using Models Based on Decision Tree and Random Forest

number of
compound
predicted

model description
nature of
ranges active inactive

specificity
(%)

sensitivity
(%)

overall accuracy of prediction
(%)

OOB error
(%) MCC

decision tree training set active 16 1 96.4 94.1 95.5 0.91
inactive 1 27

cross validated set active 14 3 85.7 82.3 84.4 0.7
inactive 4 24

random forest active 16 1 92.8 92 93.3 6.7 0.86
inactive 2 26
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Table 6. Relationship of A1, A2, A13, A15, and A27 with hQC Inhibitory Activitya
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vertex i, m is equal to 1, 2, and 3 for Rξ1
SV, Rξ2

SV, and Rξ3
SV. The value

of km is equal to 1, 10, and 10
2 for k1, k2, and k3, respectively, and n

is the number of vertices in a hydrogen suppressed graph G.
The detour distance Δ (i, j|G) between the vertices i and j of

G is the length of the longest path having maximum number of
edges separating i and j. The σi is the maximum path sum that
may be defined as the sum of length of longest path between
vertex i and all other vertices in a hydrogen suppressed graph G.

The path eccentricity ηi of vertex i, in graph G is the length of
longest path having maximum number of edges separating i and
vertex j that is farthest from i,(ηi =maxΔ (i, j), j|G). The distance
d(i, j) between vertices i and j means the length of a simple path
which joins the vertices i and j in graphG and contains minimum
number of edges. The Si is distance sum that may be defined as
the sum of length of shortest path between vertex i and all other
vertices in graph G. Ei is the eccentricity also referred to as

Table 6. continued

aNote: (+) active compound, (−) inactive compound, and (±) compound in the transitional range.

Table 7. Proposed MAA-Based Models for the Prediction of hQC Inhibitory Activitya

index nature of range index value
total compounds in

the range
numbers compounds
predicted correctly

overall accuracy of
prediction (%)

hQC inhibitory activity
average IC50 (nM)b

classifi-
cation (%)

A1 lower inactive <264.84 16 14 87.88 2784.29 73.33
lower transitional 264.84 to <463.78 4 NA 234.5
active 463.78 to <29203.24 6 6 43.48
upper inactive 29203.24 to <1858951 11 9 626.66
upper transitional ≥1858951 8 NA 254.63

A2 inactive <37.57 14 13 95.23 2893.85 46.66
lower transitional 37.57 to <40.22 5 NA 463
active 40.22 to <59.59 7 7 42.13
upper transitional ≥59.59 19 NA 409.79

A13 inactive <89.58 27 24 92.11 1834.29 88.89
transitional 89.58 to <94.09 5 NA 402.4
active ≥94.09 13 11 41.81

A20 lower inactive <7.798 11 9 90 2839.22 44.4
lower transitional 7.79 to <10.18 15 NA 568.93
active 10.18 to <11.51 5 5 56.06
upper transitional 11.51 to <14.4 10 NA 1021.96
upper inactive ≥14.4 4 4 855

A21 inactive <6.92 22 21 86.84 1971.9 84.44
transitional 6.92 to <7.68 7 NA 308.28
active ≥7.68 16 12 43.33

aNA: Not applicable. bAverage IC50 values are based upon correctly predicted analogues in the particular range.
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separation of a vertex i in a graph G is the distance from i to the
vertex farthest from i in G, that is, Ei = max d(i, j).11

Similarly, topochemical version of the aforementioned index
termed as relative eccentric distance sum topochemical index,
denoted by Rξm

cSV, may be defined as the summation of ratio of
the product of the maximum chemical path sum and chemical
path eccentricity and the product of chemical distance sum and
chemical eccentricity of each vertex in a hydrogen suppressed
molecular graph having n vertices. It can be expressed as per the
following:

∑ σ η
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×=
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m
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where σic is the maximum chemical path sum, ηic is chemical path
eccentricity (both obtained through chemical detour matrix),31

and Sic is chemical distance sum, Eic is the chemical eccentricity
(both obtained through chemical distance matrix) of vertex i, m
is equal to 1, 2, and 3 for Rξ1

cSV, Rξ2
cSV, and Rξ3

cSV. The value of km is
equal to 1, 10, and 102 for k1, k2, and k3, respectively, and n is the
number of vertices in a hydrogen suppressed graph G.
Relative Eccentric Distance Product Index. Relative distance

product, denoted by RPξm
SV, may be defined as the product of the

ratio of product of the maximum path sum and path eccentricity
and the product of distance sum and eccentricity of each vertex in
a hydrogen suppressed molecular graph having n vertices. It can
be expressed as per the following:
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where σi is the maximum path sum, ηi is the path eccentricity,
Si is distance sum, and Ei is the eccentricity of vertex i and n is the
number of vertices in a hydrogen suppressed graph G. The values

of x, km, andm are equal to 1/2, 1, and 1 for RPξ1
SV, while for RPξ2

SV

the values for x, km, andm are equal to 1, 100, and 2, respectively.
Similarly topochemical version of the above-mentioned index

termed as relative eccentric distance product topochemical index
(RPξm

cSV) may be defined as the product of ratio of product of the
maximum chemical path sum and chemical path eccentricity and
the product of chemical distance sum and chemical eccentricity
of each vertex in a hydrogen suppressed molecular graph having
n vertices. It can be expressed as per the following:
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where σic is the maximum chemical path sum, ηic is chemical path
eccentricity (both obtained through chemical detour matrix),
Sic is chemical distance sum, Eic is the chemical eccentricity (both
obtained through chemical distance matrix) of vertex i, and n is
the number of vertices in a hydrogen suppressed graph G. The
values of x, km, and m are equal to 1/2, 1, and 1 for RPξ1

cSV, while
for RPξ2

cSV, the values for x, km, and m are equal to 1, 100, and 2,
respectively.
Relative eccentric distance sum indices and relative eccentric

distance product indices can be easily calculated from the detour
matrix (Δ) and distance matrix (D). Calculation of relative
eccentric distance sum indices and relative eccentric distance
product indices for three isomers of ethyl isopropyl cyclohexane has
been exemplified in Figure (Figure 1). Relative eccentric distance
sum indices and relative eccentric distance product indices were
evaluated for discriminating power, degeneracy, intercorrela-
tion with existing MDs, and sensitivity toward branching, as well
as relative position of substituents in cyclic structures. The
discriminating power and degeneracy of the relative eccentric
distance sum index and relative eccentric distance product index
were investigated using all possible structures with four and five
vertices (Table1). However, each chemical structure contained one

Figure 4. Average IC50 (μM) values of substituted 3-(1H-imidazol-1-yl) propyl thiourea derivatives for hQC inhibitory activity in various ranges of
MAA-based models.
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nitrogen atom as heteroatom in case of topochemical indices
(Supporting Information).
The sensitivity of the proposed indices toward branching as

well as relative position of substituents in cyclic structures was
evaluated using three isomers of ethyl isopropyl cyclohexane
(Figure 1).
The intercorrelation of relative eccentric distance/product

indices with other well-known indices, such as Wiener’s index,
Balaban’s index (D), Randic’s molecular connectivity index,
eccentric connectivity index, and Zagreb indices (M1 and M2),
was investigated (Table 3). This intercorrelation was determined
with respect to index values of all possible structures containing
four and five vertices.
Molecular Descriptors (MDs). Topochemical version of all

the five relative eccentric distance sum topochemical indices
and relative eccentric distance product topochemical indices
(denoted by Rξ1

cSV, Rξ2
cSV, Rξ3

cSV, RPξ1
cSV, and RPξ2

cSV), along with
450 other 2D and 3D MDs of diverse nature, were used to hold
the structural properties of the compounds from all aspects.
All computational work was performed on E-Dragon version 1.0.
The values of other MDs which are not the part of Dragon
were computed separately using an in-house computer program.
The descriptors used in the study include topostructural,
topochemical, topological charge indices, constitutional, phys-
icochemical, walk and path counts, information based indices,
and variety of 3D descriptors. Most of these descriptors have
been reviewed in the various textbooks dealing with molecular
descriptors.32−34 The additional descriptors calculated from an
in house program included augmented eccentric connectivity
topochemical index,35 and superaugmented eccentric connec-
tivity distance sum topochemical index 2.36 The processing of the
MDs was done by removing invariable (constant) columns and
cross correlated descriptors (with r > 0.97). The said exclusion
method was used to reduce the collinearity and correlation
between descriptors.
Finally, 46MDs (Table 4) were shortlisted from a large pool of

MDs on the basis of noncorrelating nature and classification
ability and subsequently employed for further analysis by DT
and RF. The five MDs employed for models based upon MAA
included the newly proposed A1, relative eccentric distance
product index 1, A2, relative eccentric distance sum index 1, A13,
Ghose crippen molar refractivity,32,37A20, a total size index/
unweighted,32−34,38 and A21, first component size directional
WHIM index.32−34,38

Data Set. All the 45 substituted 3-(1H-imidazol-1-yl) propyl
thiourea derivatives reported by Buchholz et al. were selected
as a data set for the purpose of present study.27 The basic
structures for the said derivatives are shown in Figure 2 and
various substituents are enlisted in Table 6.
Classification Techniques. Decision Tree. Decision trees

provide a simple and powerful method for building models for
prediction of structure−activity relationships. This popular
machine learning method is also known as recursive partition-
ing.39 By partitioning the data into disjoint groups, decision trees
produce nonlinear models that are interpretable which is a highly
valuable property of any statistical machine learning method
when applied to (Q)SAR studies.40 The decision tree involves
rules to split each node in the tree into subsets, stopping rules
which determine when a node cannot be split further and rules
for pruning or simplifying the initial tree .41 In present study, DTs
were grown to recognize the importance of MDs. In a decision
tree, the molecules at each parent node are categorized as per
the descriptor value, into two child nodes. The prediction for

molecule reaching a given terminal node is obtained through a
majority vote of molecules reaching the same terminal node in
the training set. The tree with lowest value of error in cross
validation is selected as an optimal tree. In present study, R
program (version 2.1.0) along with the RPART library was used
to grow decision trees separately for hQC inhibitory activity.

Random Forest. Random forest is a method for classification
and regression that was introduced by Breiman and Cutler.42

This technique is simply based upon an ensemble of upruned
decision trees, through which the prediction of a continuous
variable is provided as an average of the predictions of all the
trees. From the training data of n molecules, a bootstrap sample
is drawn. For each bootstrap sample, a tree is grown with the
modification that each node, choose the best split among a
randomly selected subset of all the descriptors used in study. The
tree is grown to the maximum size (i.e., until no further splits
are possible) and not pruned back. These steps are repeated until
a sufficiently large number of such trees are grown.43 Random
Forest includes a method for assessing the importance of
descriptors for the model. When each MD is replaced by random
noise, then the resulting deterioration in themodel quality serves as
a measure of descriptor importance. Themodel can be validated by
assessing the change in mean-square-error for the out-of-bag .39

In the present study, the RFs were grown separately for hQC
inhibitory activity with the R program (version 2.1.0) using the
random forest library.

Moving Average Analysis. Moving average analysis of
correctly predicted compounds is the basis of development
of single MD based model.44 For the selection and evaluation of
range specific features, exclusive activity ranges were discovered
from the frequency distribution of therapeutic response level.
This was accomplished by plotting the relationship between
index values and hQC inhibitory activity and then identifying the
active range by analyzing the resultant data by maximization of
the moving average with respect to active compounds (<35%
inactive, 35−65% transitional and ≥65% active). The data set
comprised of variable degree of hQC inhibitory activity. Since no
reference compound was reported in the data set, therefore,
compounds having reported IC50 values of ≤100 nM were
arbitrarily considered to be active [and labeled as “A” (N = 17)]
while those possessing IC50 values >100 nM [and labeled as “B”
(N = 28)] were treated to be inactive for the purpose of present
study. The hQC inhibitory activity assigned to each compound
using proposed models was subsequently compared with the
reported biological activity. The accuracy of classification for
each range in the proposed models as well as the overall accuracy
of prediction of various models was calculated. The average IC50
values for each range of proposed models were also calculated.

Data Analysis. The validation of the DT based models and
self- consistency test were performed by 10-fold cross validation
(CV) method. For classification models the sensitivity and
specificity values were calculated.45,46 Sensitivity and specificity
represent the classification accuracies for the active and inactive
compounds involved in the data set.45,47 The randomness of
model was also determined by calculating Mathew’s correlation
coefficient (MCC). The MCC values ranging between −1 to +1
indicate the robustness of model.48 MCC accounts for both
sensitivity and specificity and it is generally used as a balanced
measure in dealing with data imbalance situation.45 The degree of
correlation can be appraised by correlation coefficient r. Pairs of
MDs with r ≥ 0.97 are considered to be highly intercorrelated,
those with 0.90≤ r≤ 0.97 are considered appreciably correlated,
those with 0.50 ≤ r ≤ 0.89 are weakly correlated and finally pairs
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of MDs with low r values (<0.50) are not intercorrelated.30

The intercorrelation between MDs finally utilized for developing
MAA based models, that is, A1, A2, A13, A20, and A21 was
also investigated. Results are summarized in Tables 5−7 and
Figures 3 and 4.
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